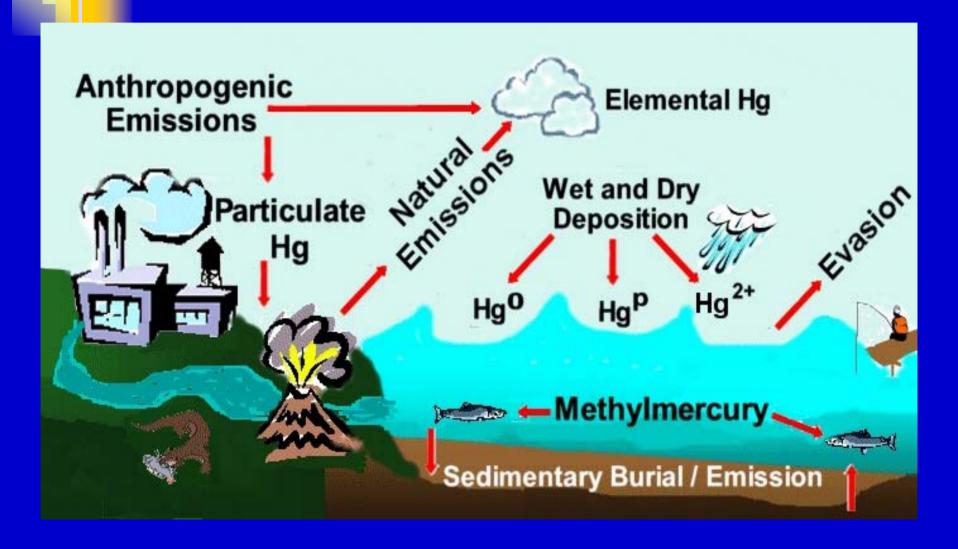
Observations on "A CEC/IJC/EC Workshop: Addressing Atmospheric Mercury: Science and Policy"


December 13 and 14, 2001

John McDonald International Joint Commission

BNS MEETING - WINDSOR, Ontario

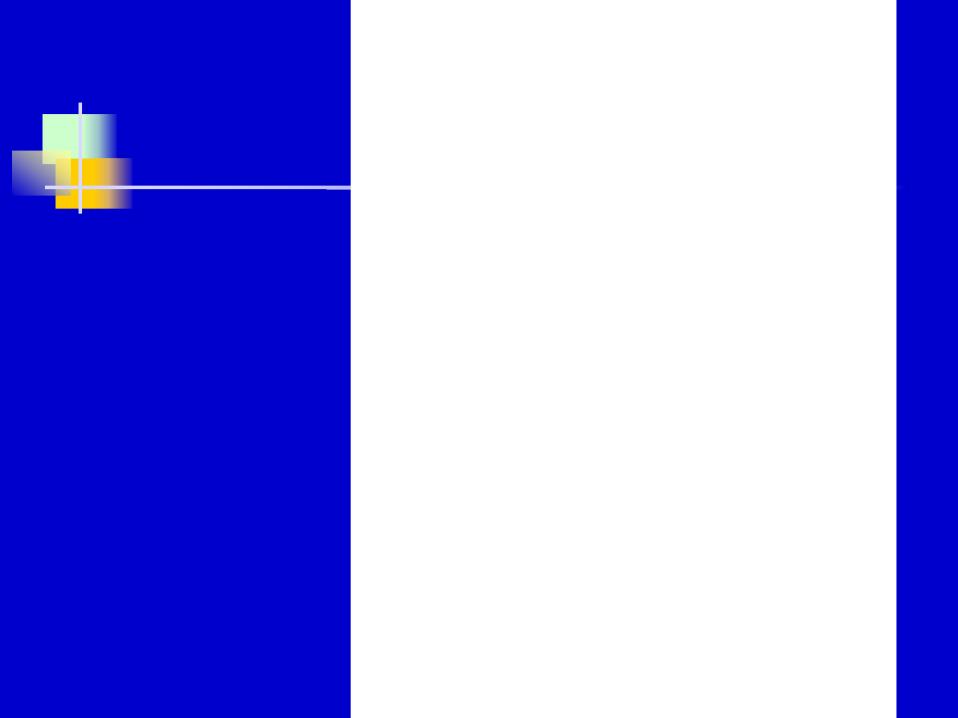
May 29 – 30/02

The Mercury Cycle

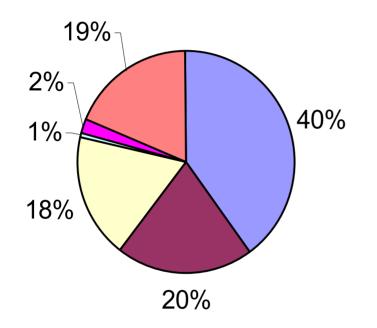
Physical Properties of Hg⁰ and Some Hg Compounds

(tabular data from Schroeder and Munthe, 1998)						
Property	$\mathbf{H}\mathbf{g}^0$	HgCl ₂	HgO	HgS	CH ₃ HgCl	(CH ₃) ₂ Hg
Melting Point (°C)	-39	277	decomp. @ 500	584 (sublim.)	167 (sublim.)	?
Boiling Point (°C)	357 @ 1 atm	303 @ 1 atm				96 @ 1 atm
Vapor Pressure (Pa)	0.180 † @ 20° C	8.99×10 ⁻³ ‡ @ 20° C	9.20×10 ⁻¹² @ 25° C	?	1.76 @ 25°C	8.30×10 ³ @ 25° C
Water Solubility (g L ⁻¹)	49.4×10 ⁻⁶ @ 20° C	66 @ 20° C	5.3×10 ⁻² @ 25° C	~2×10 ⁻²⁴ @ 25° C	~5-6 @ 25°C	2.95 @ 25° C

[†] Implies a saturation air concentration of about 14 mg per cubic meter at 1 atmosphere

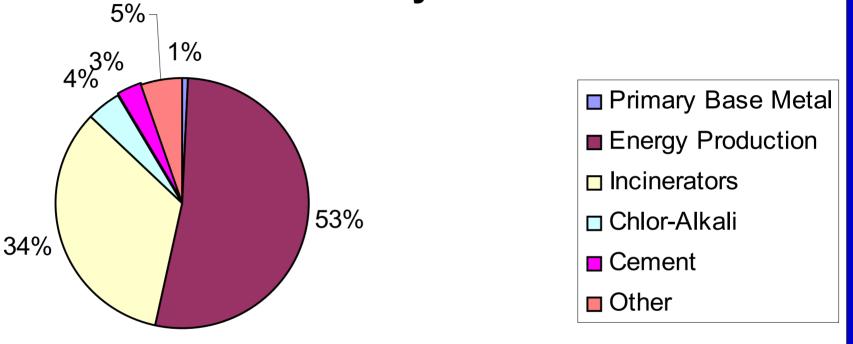

[‡] Implies a saturation air concentration of about 1 mg per cubic meter at 1 atmosphere

Estimates of the Percent of Great Lakes Loadings Attributable to the Atmospheric Deposition Pathway

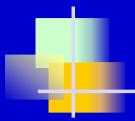

Pollutant	Lake Superior	Lake Michigan	Lake Huron	Lake Erie	Lake Ontario
DDT	97ª	98ª	97ª	22ª	31ª
Lead	97ª; 64 ^b ; 69 ^d	99ª	98ª	46ª	73ª
Mercury	73 ^d	> 80 ^j	k	k	k
PCB's	90°; ~ 95°,c; 82°	58ª	78ª	13ª	7ª
PCDD/F	~100° ~80 ^f	50-100° (PCDD) 5-35° (PCDF) 88 ^f	86 ^f	~40 ^f	5-35 (PCDD) ^e < 5 (PCDF) ^e
Benzo(a)pyrene	96ª	86ª	80ª	79ª	72ª
Hexachloro- benzene	99 ^f	95 ^f	96 ^f	> 17 ^f	40^{f}
Atrazine	97 ^h	~30g; 23h	~20 ^h	~10-20 ^h	~5 ^h
Mirex	k	k	k	k	~5ª

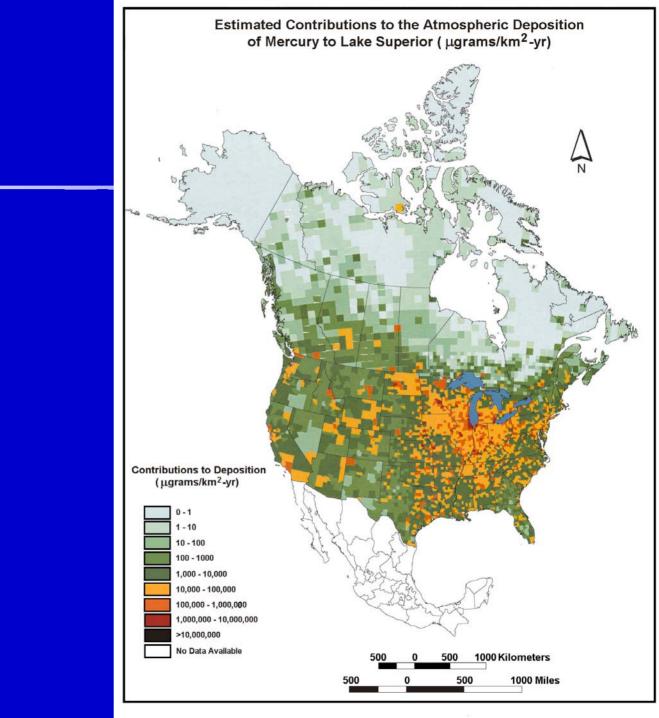
References and Notes

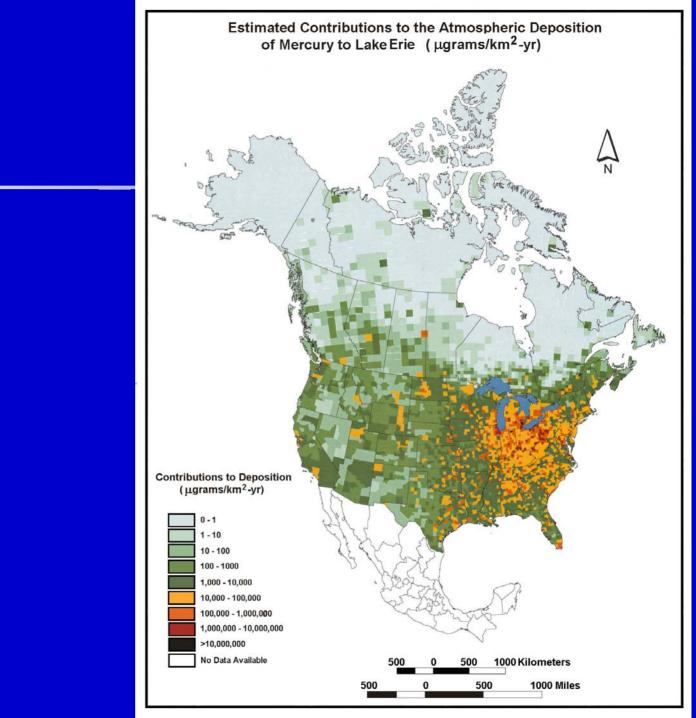
(a) Strachan and Eisenreich (1988), percentages of total inputs; (b) Hoff *et al.* (1996); (c) Net loss of PCB's to the atmosphere of 1600 kg/year; total non-atmospheric inputs of approximately 70 kg/year; (d) Dolan *et al.* (1993); (e) Pearson *et al.* (1998); (f) Cohen *et al.* (1995); (g) Rygwelski et al. (1999); (h) Schottler and Eisenreich (1997); (j) Mason and Sullivan (1997); (k) no estimates could be found

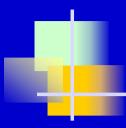

Preliminary Canadian Anthropogenic Emissions of Mercury by Sector, 1995

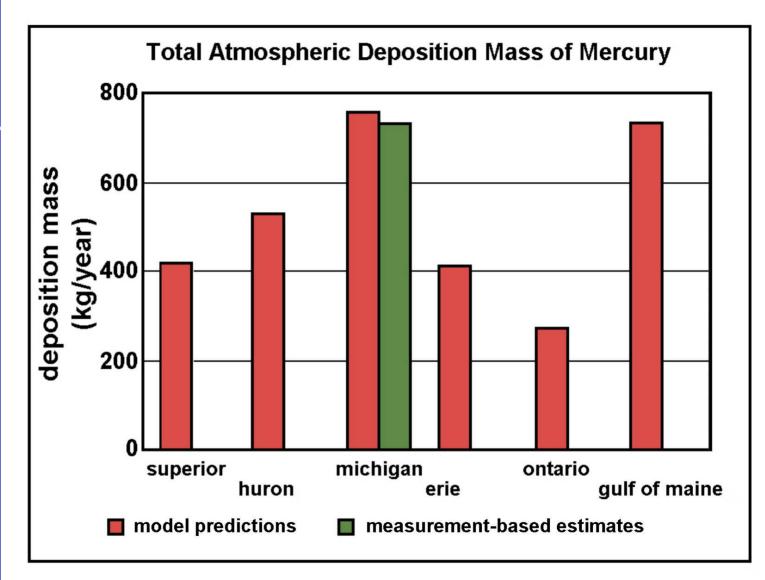
Total: 11 tons


U.S Estimates of 1994-1995 Mercury Emissions by Sector

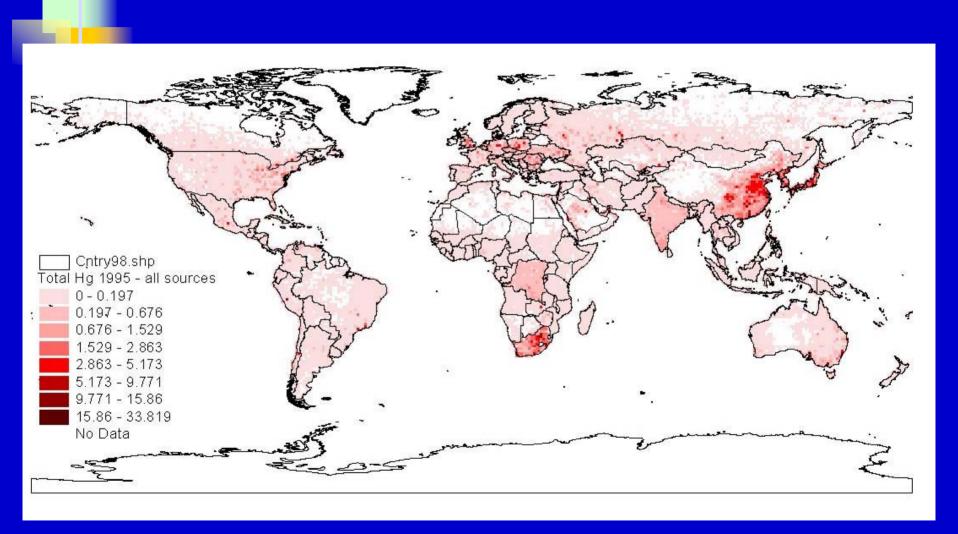

Total: 158 tons

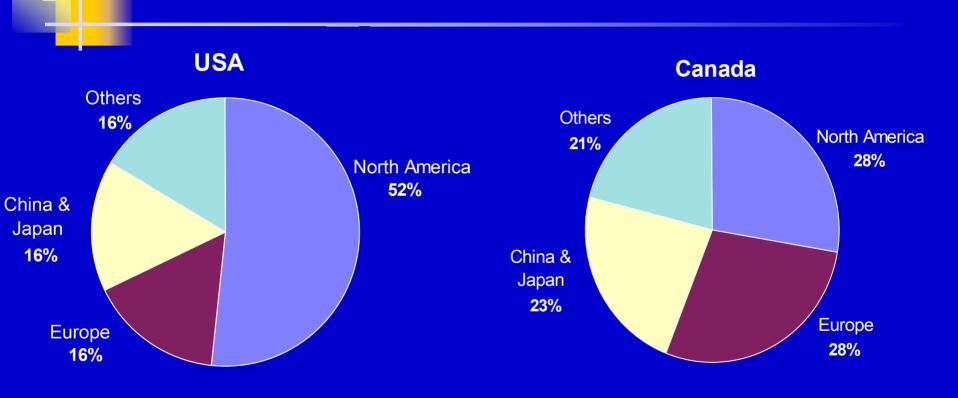

Mercury Science/Policy Modeling Issue: Air Emissions Inventory


Reason for Importance:	The Good News:	The Bad News:
 Important policy work/trend data Accurate Inventory crucial to Models 	 United States: Final Inventory exists for 1996: Draft inventory for 1999 Relatively good data for utility coal combustion Canada: Inventory exists for 1995; 2000 inventory under development Mexico: 1999 Inventory available Global inventory available for 1990, 1995 	 Inventories are of unknown quality (utilities are exception) Very few speciated emissions measurements Inventories not transparent (except for Mexico) and not well documented – hard to find and fix problems



Mercury: Atmospheric Chemistry

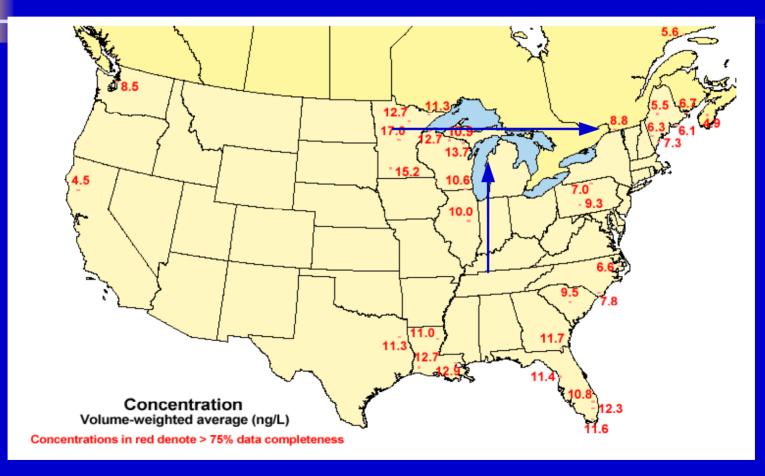




Global Emissions of Mercury (Total Hg 1995 - All sources (tonnes))

Estimated total wet deposition of mercury Contribution from various source regions, 1997

Mercury Science/Policy Modeling Issue: Atmospheric Fate and Transport Modeling


Reason for Importance:	The Good News:	The Bad News:	
 Models help fill in the spatial and temporal gaps between measurements Models can support interpretation of measurements Models can provide estimates of source-receptor relationships; how much does each source region and source type contribute 	 Researchers around the workd are working on atmospheric mercury models (~10 groups in the U.S.; ~2 groups in Canada) Some are getting reasonable results compared to ambient measurements An atmospheric mercury model intercomparison study is underway in Europe, includes some North American researchers 	 Funding is scarce and competition is fierce; thus, collaboration is difficult Substantial uncertainty in atmospheric chemistry and other processes; little funding for research to improve this Emissions inventories (input) and ambient monitoring (evaluation)limited 	

Main Mercury Species Typical Ambient Air Concentrations

	Concentration Ng/m 3	Temporal Scale	
Elementary Mercury: - Hg°	1 - 3	Global Lifetime: Months to a year	
Divalent Mercury: - HgCl ₂ - HgO	0 - 0.1 ?	Local/Regional Lifetime: hours to a day	
Particulate Mercury	0.02 - 0.1	Regional Lifetime: 1 –3 days Dr. P. K. Misra, Ontario Mir	istry of the Environme

Weighted Mercury Concentration in Precipitation Mercury Deposition Network (MDN), 1999

Decreasing trends: West to East / South to North

CAMNet TGM/MDN sites

Coral Springs Data Summary

(12-06-00 to 03-31-01)

Analyte	Units	N	Mean	Standard Deviation	Maximum
Hg^0	ng m ⁻³	781	1.69	0.21	2.81
RGM	pg m ⁻³	781	4.2	6.4	66.8
O_3	ppb	771	21.7	13.9	76.0
NO	ppb	769	7.2	11.9	102.5
NO_X	ppb	769	19.2	17.8	136.5
SO_2	ppb	781	0.87	2.46	31.5

Mauna Loa Monitoring Summary

Analyte	Units	N	Mean	Std Dev.	Minimum	Maximum
Hg^0	ng m ⁻³	331	1.3	0.7	0.5	7.5
RGM	pg m ⁻³	331	126	89	0	381
Hg^{P}	pg m ⁻³	331	37	37	0	215

	Surf	ace	100 M	leters	1000 N	leters
Flight	Hg(p)	RGM	Hg(p)	RGM	Hg(p)	RGM
1	23	90	5	22	0	0
2	16	40	20	16	0	3
3	16	132	0	17	0	3

What Do We Know So Far ...

- No evidence of the Atlantic Ocean as a source of RGM
- Elevated levels of RGM observed at surface in Coral Springs, Fl only on impact by anthropogenic sources
- High concentrations of RGM observed in marine free troposphere - suggest Hg⁰ oxidation mechanism aloft
- Arctic Hg⁰ depletion events
 - surface level phenomenon
 - photo & snow mediated (halides)

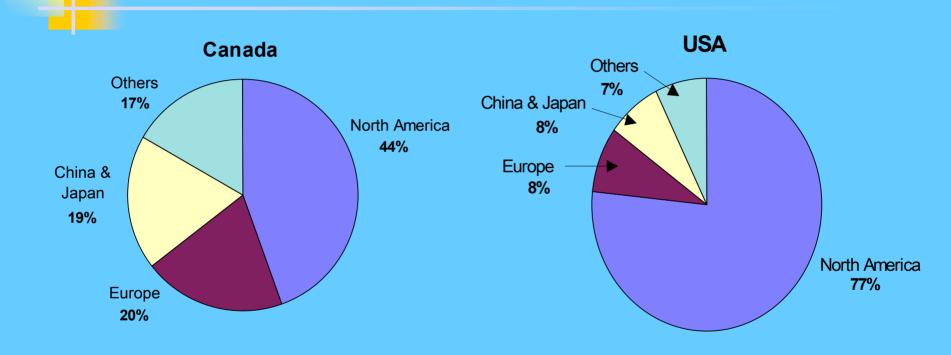
Mercury Science/Policy Modeling Issue: Ambient Air Monitoring

Reason for Importance:	The Good News:	The Bad News:		
 The air deposition pathway is critical to looking at ecosystem mercury contamination Empirical deposition estimates can be developed Allows for trend evaluation Supports model evaluation ("Ground Truthing") 	 MDN – (Wet Deposition) at a number of sites in U.S. and Canada MDN data are easy to obtain CAMNET – provides ambient air concentrations of Hg(0) and TGM at a number of locations 	 More dry deposition information needed Reactive gaseous mercury (RGM) is a key component of wet and dry deposition Now, only a few measurements of RGM A network of speciated ambient air measurements – RGM, HG(p), Hg(0) – with readily available data needed 		

In determining ultimate fate of mercury, further information needed on:

- speciation (source and receptor) and chemical transformations - Hg(0) to RGM
- contribution and interaction of all pathways (mass balance - air, water, sediment)

Must account for the global burden


 Must model ultimate fate and human health impacts (driver)

Website

www.ijc.org/boards/iaqab

Estimated total dry deposition of mercury: Contribution from various source regions -1997

